
Tools and Techniques for Large Scale Grading using
Web-based Commercial Off-The-Shelf Software

∗Robert N. Lass Christopher D. Cera Nathaniel T. Bomberger
Bruce Char Jeffrey L. Popyack Nira Herrmann Paul Zoski

{urlass,cera,ntb22,bchar,jpopyack,nherrmann,pzoski }@mcs.drexel.edu
Drexel University Programming Learning EXperience (DUPLEX)

Departments of Mathematics and Computer Science
Drexel University

Philadelphia, PA 19104
http://duplex.mcs.drexel.edu

ABSTRACT
Courseware/Course Management Systems (CMS) such as WebCT
or Blackboard are an increasingly popular way to provide a web
presence for a course. However, their current web-browser reliance
makes it difficult for them to provide functionality that could be
useful to computer science instructors. This paper describes our
augmentation of a CMS in a large introductory computer science
class. It further describes our enhancement of the CMS by client-
side software (i.e. residing on the graders computer), written for
use by the instructors and graders. Finally, it indicates how con-
ventional CMS architecture can be extended to provide additional
functionality that would be desirable for computer science instruc-
tion.

Keywords
Course Management Systems, Courseware, WebCT, Plagiarism De-
tection, Electronic Pen-based Markup, Introductory Programming

Categories and Subject Descriptors
J.1 [Computer Applications]: Administrative Data Processing—
Education; K.3.1 [Computing Milieux]: Computer Uses in Edu-
cation—Computer-Assisted Instruction (CAI); K.3.2 [Computing
Milieux]: Computer and Information Science Education—Com-
puter Science Education

∗This work supported in part by Drexel University, the National
Science Foundation Division of Undergraduate Education through
grant DUE-#0089009 and the Pew Learning and Technology Pro-
gram at the Center for Academic Transformation as part of the Pew
Grant Program in Course Redesign.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE2003 6/03 Thessaloniki, Greece
Copyright 2003 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

General Terms
Management, Design, Human Factors

1. INTRODUCTION
Web-based Course Management Systems (CMSs) provide an in-

creasingly elaborate environment for instructors and students. These
portals provide a central repository for lectures, course materials,
discussion and email capabilities, and facilities for online testing
and assignment submission. In higher education, these facilities are
becoming more and more common for delivering a cost-effective
and cooperative learning environment.

We provide introductory computer programming courses to Com-
puter Science (CS), Computer Engineering (CE), Information Sys-
tems (IS), and Digital Media (DM) majors. Our teaching staff con-
sists of tenure-track and auxiliary faculty working with graduate
teaching assistants and undergraduate lab assistants and graders.
For large classes of about250−300students, we typically employ
2 professors, and10−12teaching assistants (TAs). Further discus-
sion of our curricular redesign can be found in [4].

The course format consists of a weekly, one-hour lecture given
by faculty and a two-hour lab section where students take an on-
line quiz and complete group exercises under the supervision of
graduate and undergraduate assistants. Course management is han-
dled through our institutionally supported CMS, which also serves
as a repository of course materials, student submitted work, and
grades. This repository is ideal for gathering statistical artifacts
useful for administrative evaluations over several iterations of the
same course.

Advantages of Course Management Systems include file shar-
ing among the teaching staff or between teaching staff and stu-
dents; electronic storage of student documents in a central reposi-
tory, which minimizes the loss of student work; and ease in shar-
ing course materials between terms since course directories can be
copied into a new course. There are also blanket facilities for col-
laborative services such as newsgroup-style discussion threads and
chat.

Our experience using a CMS is mixed: its strength as a reposi-
tory for sharing information in a controlled fashion generally off-
sets the extra effort students and instructors must exert to learn how
to use it. We have also found some aspects, such as its browser-
centric user interface to be excessively time consuming to operate.
In addition, not all the features we need to make our courses run

more efficiently are currently available.
A general CMS can not offer features that would only benefit

teaching staff in a limited domain. For instance, a general CMS
will not provide support for specialized source code plagiarism de-
tection. A general system probably should not try to do so, but it
should at least provide interfaces to support interoperability with
other systems.

The majority of the work on automation and management of
computer science courses focuses on “homegrown” systems that
are not intended for wide deployment outside of their department
or university [13, 14, 10, 2, 5]. Another family of university-
developed courseware focuses on computer-aided assessment in the
form of interactive tutoring [10, 8]. We focused our efforts on writ-
ing software to interact with the third-party CMS supported by our
university. We found that we were able to easily write software to
automate repetitive tasks associated with the CMS. This approach
conserves our resources, since we only have to administer our client
program and not the CMS itself.

Computer science academics, when faced with less-than-ideal
software, are tempted to write their own from scratch. However, the
task of developing and maintaining a large “mission-critical” sys-
tem requires serious commitment of resources. Either commercial
support by itself (as envisioned by WebCT, Blackboard, and similar
commercial systems) or in conjunction with an open-source effort
(such as envisioned by the Open Knowledge Initiative (OKI) [9]) is
needed. A more limited approach, namely creating software tools
to interact with an existing CMS system to provide additional fea-
tures, is a feasible and useful alternative; one we have embraced.
We report here on tools created to support by facilitating course
management in large CS courses and extend the capabilities of the
CMS.

Our experience with user-developed, customized add-ons to CMSs
illuminates an area that will be of growing interest and importance.
Indeed, OKI has realized this view and has built-in APIs which
support a subset of the enhancements described in this paper.

The rest of this paper is organized as follows: Section 2 discusses
the general problems and our goals that include building software
to solve them. Section 3 discusses our approach to solving these
problems in the context of CS courses. Section 4 introduces our
cross-platform software solution which demonstrates our ideas of
CS course management. We further elaborate on its use in a practi-
cal course environment and the details of its implementation. Sec-
tion 5 discusses our results, presents our conclusions, and outlines
our goals for future research.

2. PROBLEMS AND GOALS
CMSs typically provide facilities for instructors to post assign-

ments, for students to submit electronic copies of assignments or
quizzes, and for instructors to post grades for them after electron-
ically downloading the student files for inspection on their own
machine. This is convenient for large courses, in that all work is
time-stamped and archived, students need not hand in a hard copy
or floppies, and password protected grades are available to students
whenever and wherever they have access to a web browser. How-
ever, we found both “early adopter” and “design limitation” prob-
lems with these functions.

Initially, with our CMS, WebCT [15], we found that download-
ing submitted homework assignment files for a single section or the
entire class involved substantial effort: multiple clicks and some
typing were required to download each student’s program files onto
a grader’s local file system. It was difficult to distribute or collect
student work by lab section while still providing students a com-
mon site to pick up and submit material. Once downloaded, addi-

tional commands were needed to handle files that were deposited
by students that were archived, compressed, or encoded (e.g..tar
.gz , .uue , .zip). Care had to be taken to ensure that all files
were downloaded and that the resulting file had a directory struc-
ture that made it easy to find a particular student’s files.

We decided to create a software tool that would interact with the
CMS server software and provide the following features:

1. Quick download/upload of files with minimal clicking.

2. Ability to pick up or deposit student work by lab sections.

3. Organization of downloaded files into coherent directory struc-
tures.

4. Extensible bulk post-processing of files: file transformation,
submission of class files to spelling, style, and plagiarism
checkers, etc.

Our goal was to quickly and easily download only the assign-
ments needed by a specific grader (e.g., just students in one partic-
ular section) and have them organized into a systematic format suit-
able for grading or interfacing with another program for further pro-
cessing (e.g., the JPlag [12] plagiarism detection system). We also
wanted the software tool to be easily extended to other uses, such
as generating PDF versions of written work and source files that
can be graded electronically with digital pen-based markup [11].

Administrator-level access in CMSs is typically restricted to a
few people because of the need to protect the security and integrity
of the database. Instructional staff members are given more limited
ability (in WebCT, “Designer access” or “TA access”) to change or
extract information from the database: in order for staff members to
download individual student assignments, they must click on each
student’s user name individually, then on each file the student up-
loaded. This can be a very laborious and time consuming task for
a class of dozens or even hundreds of students, particularly since
programming assignments can contain several files.

Recent versions of our CMS allow a staff member to zip each
student’s assignment files into a single file, but still require clicking
on each student’s user name to obtain a single section. Download-
ing the whole class does not entirely solve this problem since the
grader still must separate his or her section from the rest of the
class. Also, this is not always quicker than downloading the indi-
vidual files if the server is slow in handling the increased processing
required to compress the files.

Sending the appropriate student files to graders in a large course
was also a problem with earlier versions of WebCT. In order to
share common content files (e.g. lecture notes), all students were
enrolled in a single class. But then it became difficult to identify
students by section so that grading work could be divided up by
section. Furthermore, even if section information is available in the
gradebook, as with version 3.8 of WebCT, in some classes at Drexel
grading is assigned to TAs through other criteria, such as the last
two digits of the student ID number. The CMS should allow the
client to specify the criteria for assigning grading work to TAs.

3. TECHNICAL APPROACH
This section will describe our approach to the management of

CS courses. This approach is broken down into a series of stages,
where each stage is dependent upon all previous stages. Most of
the operations described here will be invoked by a staff member,
and the processes executing those operations will reside on the host
of that staff member.

3.1 Bulk Downloading of Student Submissions
All student submissions, whether assignments, quizzes or exam-

inations1, will be in a centralized repository. An assignment will
consist of a set of files, while an exam will typically be an ASCII
file consisting of questions and answers. A grader should have the
ability to automatically download submissions in bulk (i.e. for a
particular submission, download every student who submitted that
assignment), sort them by section, and ideally they should be unar-
chived and uncompressed after transmission. The range of queries
invoked by a staff member will vary greatly. For instance, there
might be only a subset of students to grade (i.e. just a particular
section) and for only a subset of their submissions.

Most systems enforce an “interactive grading” approach. This is
where a grader views a submission using their web browser, and
performs the actual grading online. Hence, the grader can view the
submission, but never actually save it on their machine unless they
trigger the browser to do so. This approach is inadequate since it
requires a grader to have network connectivity whenever they wish
to grade submissions. It is much less restrictive and more practical
to have a system which allows graders to download submissions to
their machines when they have network connectivity (in bulk), and
grade the assignments without being connected to the Internet.

Regardless of the interface provided by the repository, sophisti-
cated functionality can still be developed using software tools that
operate at the same level as the course staff (faculty and teaching
assistants). It is often the case that the repository is not developed
or even maintained by the staff members. Most of the functionality
that is available through the web-browser interface can be auto-
mated by a simple HTTP program. The authors believe that the in-
vestment of time in automating this process is warranted since the
labor savings in later stages of the grading process outweigh the
initial investment in building the automated extraction functional-
ity. Those savings will be addressed in the following sections.

This is the only aspect of developing software tools which de-
pends upon the actual repository interface. Commands used by
each CMS and storage locations for files differ, which means that
porting the software tools to other systems initially requires a cer-
tain amount of customizing. In addition, when the CMS interface
changes, preserving the software tools ability to access the system
will require some maintenance activities. However, the remaining
functionality of the software tools can be decoupled from the details
of how the repository is maintained, so changes to these sections of
the software are not needed unless additional information from the
repository is required. Generally, all additional processing is done
on the user’s machine rather than in the actual repository, an advan-
tage if the repository interface is subject to frequent changes in its
access interface.

3.2 Post-Processing Assignments
After submission, a file may be further processed to help grade

it. This processing can occur on the grader’s computer as opposed
to the CMS server.

The original files submitted to the repository may be in a com-
bination of formats, and therefore must be properly filtered, de-
coded, dearchived, and decompressed. Thus subsequent stages of
the pipeline do not have to perform this filtering. A subset of the
types of file formats submitted by students include:

1. tar format, used to archive file system hierarchies into a
single file.

1Our weekly laboratories are implemented as examinations since
these are also conducted in a question and answer format.

2. gz,bz2 formats, used to compress files.

3. zip format, the most widely used archive and compression
format.

4. uue format, a more arcane format used to transfer binary
data between systems that do not support receipt of binary
data.

5. pdf,rtf,doc formats, binary encoded formats used to sub-
mit typeset textual data.

6. txt formats, used to submit ASCII data which could be doc-
umentation, or source code.

Some binary formats, such as that of Microsoft Word are pro-
prietary. Limited reverse-engineering does exist for conversion of
such files to text.

3.3 PDF files for Electronic Pen-based Markup
Using Adobe Acrobat software, PDF documents can have sec-

tions of text highlighted, underlined, and further annotated before
being returned to students. Pen Tablets, such as the Wacom Graphire
or the Sony Vaio Slimtop Pen Tablet PCV-LX920, provide an intu-
itive interface for such marking of PDF documents. This feedback
method has the closest resemblance to the handwritten markings of
traditional pen and paper grading while keeping the advantages of
being represented digitally.

Once we have transformed source code from submitted student
assignments into Adobe’s Portable Document Format (PDF) files,
we can load them into Adobe Acrobat, and annotate them using a
pen tablet. The documents and grader markup can then be saved
and returned to students. A similar effect could be achieved by
loading the document into Windows Journal on a Tablet PC and
writing over it. An advantage of returning PDF files to students is
that they can be viewed on almost every platform.

The electronic grading interface that WebCT provides consists
of text-box where a grader enters comments, and another text-box
where they enter the grade. This is extremely inadequate, and
forces the grader to resort to citing line numbers with every com-
ment. When assignments were submitted on paper in the traditional
fashion, graders were able to circle blocks of code, draw arrows,
and so on. A text-box interface increases the amount of work re-
quired to make comments, and makes the resulting comments much
more difficult for a student to understand.

A standard collating sequence is used to concatenate multiple
text files into a single PDF. The “bookmark” feature of Adobe Ac-
robat can be used to allow the grader to jump easily between dif-
ferent sections of the concatenated result.

3.4 Interfacing with Heterogeneous Systems
There is a need for course repositories to inter-operate with other

heterogeneous systems. Every system has at least one format or
protocol it accepts as input. Unfortunately, these formats are usu-
ally different and often incompatible with one another for different
reasons. Our approach to interfacing with heterogeneous systems
involves downloading submissions to the graders machine as an in-
termediate step.

Plagiarism is a troubling problem, and especially laborious to
detect in large classes. An automated solution aids appropriate and
timely detection of the problem. here are several free and commer-
cially available programs and services which perform batch sim-
ilarity measures on a collection of documents [1, 12, 16]. In in-
troductory programming, we require similarity detection of source
code as well as written documents.

The referenced systems will check student files placed in a file
directory of the user for similarity. These systems report overall
similarity metrics based on a single document or a collection of
documents. Interfaces providing document by document compar-
isons are also available to aid in human inspection and confirmation
of plagiarism.

Moss. We have made extensive use of the Moss program to detect
plagiarism in C++ programming assignments. Moss handles sev-
eral programming languages, including C, C++, Java, ML, Lisp,
Scheme, Pascal, and Ada. The diversity of language support can be
utilized in a variety of programming courses.

Output from Moss provides a list of HTML links to flagged re-
gions of suspect documents as well as a measure of percent similar-
ity. Moss also has a “common code” feature that allows the user to
specify code that should be removed from the similarity detection.
This is useful, for example, when the instructor provides computer
code for students to use as part of their solution to an assignment;
thus, all students would be expected to have this code in common
and it should be eliminated when checking for plagiarism.

JPlag. JPlag is another plagiarism detection system that we started
using more recently. The programming languages supported by this
system include C, C++, Scheme, and Java. It computes a similar-
ity percentage among two documents, or groups of documents if
applicable.

This program has an added advantage that it works on written
English text, so it can detect plagiarism within the internal and ex-
ternal documentation that accompanies student programs. This sys-
tem could also be utilized in liberal arts courses to detect plagiarism
in written documents, reports, etc.

4. IMPLEMENTATION
The following subsections detail our operating environment, and

the tools we’ve developed to provide the services outlined in this
paper. This tool provides bulk downloading of submissions, post-
processing of files into an organized directory structure, and PDF
generation to facilitate pen-based markup. Our goal is to have a
client-side application which runs on multiple platforms and that
creates a more efficient grader experience when interacting with a
course repository, and providing a platform for the specific tasks
which occur thereafter.

4.1 Labrador
Labrador2 is, a cross-platform utility which combines “ease of

use”, and the ability to handle a large number of students efficiently.
We have found that use of Labrador has significantly reduced the
time spent grading under WebCT. Overall, this has allowed our staff
to spend more time with students, and less time grading.

4.1.1 Pipeline
Here we present our implementation of the approach defined in

Section 3.

Downloading Submissions.Our classes make use of the We-
bCT CMS as the course repository. WebCT allows an authorized
grader to download student submissions after clicking through a
laborious series of web-based menus. Given a query consisting of

2The name refers to the canine breed Labrador Retriever. Its name
was chosen to emphasize the ”fetching” capabilities of the applica-
tion.

a course name, grader’s name and password, the submission’s ti-
tle, and a set of students, Labrador masquerades as a human user
and crawls through the series of menus until it retrieves the sub-
missions. WebCT’s authentication scheme require our software
to manage cookies. In addition, the web-crawling mechanism re-
quires a combination ofHTTP-Get andHTTP-Post operations.
The extraction interface provided to us is unfortunately HTML.
Hopefully future repositories will support better protocols designed
specifically for general retrieval of data, as opposed to data de-
signed for merely the display of content (i.e. HTML). The IMS
standards [6] and those proposed by OKI[9] are presently address-
ing these needs. IMS has proposed standards for XML representa-
tion of quizzes or tests and student responses and OKI has an API
built in that would assist people in building applications such as
Labrador.

Post Processing.This optional stage examines each individual
file, identifies the encoding format of the file, and extracts the orig-
inal contents of the file. If any directories are created during this
process, the files contained in those directories recursively evalu-
ated in a similar fashion.

PDF Generation.If a student submits multiple files, they are
all put together into a single PDF document in a reasonable order.
Bookmarks are also created that the grader can click on to easily
jump between files while grading.

User Interface.We provide a variety of methods for interfac-
ing with Labrador to satisfy the varying preferences of different
graders. Currently, there are four different methods:

1. Command-line. All of the information needed to retrieve the
proper files from WebCT is provided in various options of
the command-line prompt. While user-unfriendly, it makes it
easy for Labrador to be invoked in in shell scripts, or through
a remote network terminal session.

2. Configuration File. A user invoke Labrador with a configu-
ration file in lieu of command-line options. A configuration
file can be generated during a Labrador run, to be used in the
future. For security reasons, the password cannot be stored
in the configuration file, and must be entered at run time.

3. Interactive. If the needed information is not supplied at the
command-line, Labrador will prompt the user for it. In the
Windows environment, double-clicking on the Labrador icon
is equivalent to running the program with no command-line
options and results in a series of interactive prompts.

4. Graphical User Interface.A fully functional Graphical User
Interface (GUI) has been developed using Perl/Tk [7].

5. IMPACT
We have found significant advantages to maintaining our course

using a Course Management System. Prominent among them are
less time spent with HTML layout for course websites, a technol-
ogy learning curve amortized over many courses instead of just one,
fewer student papers misplaced and secure authenticated access to
a campus-wide portal. Early adopters, however, will continue to
wish for additional functionality for their domain to achieve signif-
icant time savings or facilitate additional pedagogical goals. More
significantly, we see it inevitable that certain courses or disciplines
will desire additional operations or post-processing that would be

unsuitable to offer to users who would find such functionality con-
fusing or irrelevant to their disciplines.

We have focused on particular services that could be feasibly
developed over a modest period of time and that brought substantial
value to our teaching staff. The goal of our software solution is to
make staff more productive by allowing them to spend their time
grading and interacting directly with students instead of operating
user interfaces. In addition, since Labrador removed a major source
of irritation from graders when using the CMS, they were more
open to considering its benefits and making use of its strengths.

6. FUTURE WORK
We are continuing to develop software tools to facilitate course

management, interact with other software systems, and provide an
easier interface for our students and faculty.

Some areas of interest in the future are automatically compil-
ing student program submissions and running them through a test
suite [3, 13]. We are also hoping to begin work on a system for
automatically checking the coding style of student homework.

It would be desirable to have a way of easily retrieving data (in
the form of previously completed assignments) from earlier offer-
ings of the same course in the event that a particular assignment
were reused. This would further eliminate the long-term plagia-
rism problem for frequently offered courses.

Finally, we have begun work on completing the cycle: pushing
the grades back into the CMS.

7. CONCLUSION
The primary goal of our work here is to improve instructional

productivity by reducing effort by staff, as well as allowing instruc-
tors more sophistication in the management of CS courses. We see
considerable growth at providing customized services based on in-
formation available through CMSs and other web-based sources.
CMSs must provide application programmer interfaces to allow
programmed, secured interactivity with clients and other servers
for this to become feasible.

We have discussed how we designed and implemented Labrador
to allow more sophistication use of a particular CMS in the man-
agement of CS courses. We have seen that with WebCT at least,
greater sophistication led to reduced time spent operating the CMS
by instructional staff. In our introductory class alone, we estimate
that Labrador saves us a total of five hours with each assignment.

Conceptualizing and modularizing the actions Labrador takes
made it easier to conceive of and providing additional functional-
ity in support of CS instructional goals. Eventually, we see CMSs
uniformly providing APIs to allow local computing staffs to pro-
vide customized connections to academic web services such as pla-
giarism detection, program testing, or instructor-generated grading
feedback.

8. ACKNOWLEDGMENTS
We wish to acknowledge the assistance of Mr. John Morris, Dr. Jan-

ice M. Biros, and their colleagues in the Office of Information Re-
source and Technology at Drexel University for their help and sup-
port with WebCT.

Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not nec-
essarily reflect the views of the National Science Foundation, the
Center for Academic Transformation, or the other supporting orga-
nizations.

9. REFERENCES
[1] Alex Aiken. MOSS: A System for Detecting Software

Plagiarism (Unpublished),http:
//www.cs.berkeley.edu/˜aiken/moss.html .

[2] S. Benford, E. Burke, E. Foxley, N. Gutteridge, , and A. M.
Zin. A Course Administration and Marking System. In
Proceedings of the International Conference of Computer
Based Learning, 1993.

[3] Michael H. Goldwasser. A Gimmick to Integrate Software
Testing Throughout the Curriculum. InProceedings of the
33rd SIGCSE Technical Symposium on Computer Science
Education, pages 271–275. ACM Press, 2002.

[4] Nira Herrmann, Jeffrey L. Popyack, Bruce Char, Paul Zoski,
Christopher D. Cera, Robert N. Lass, and Aparna Nanjappa.
Redesigning Computer Programming Using Multi-level
Online Modules for a Mixed Audience . InProceedings of
the Thirty-Fourth SIGCSE Technical Symposium on
Computer Science Education, pages 0–0. ACM Press,
February 2003.

[5] J. Hyvonen and L. Malmi. Trakla – A System for Teaching
Algorithms Using Email and a Graphical Editor. In
Proceedings of HYPERMEDIA, pages 141–147, 1993.

[6] IMS Global Learning Consortium, Inc. Welcome to IMS
Global Learning Consortium: Specification: Question and
Test.http:
//www.imsproject.org/question/index.cfm ,
March 2003.

[7] Stephen Lidie and Nancy Walsh.Mastering Perl/Tk.
O’Reilly, 2002.

[8] Thomas Loźano-́Perez, Eric Grimson, Leslie Kaelbling,
Chris Terman, and Patrick Winston. Technologically
Enhanced Education in Electrical Engineering and Computer
Science,http://www.swiss.ai.mit.edu/
projects/icampus/projects/eecs.html .

[9] Open Knowledge Initiative.
http://web.mit.edu/oki .

[10] Abelardo Pardo. A Multi-agent Platform for Automatic
Assignment Management.ACM SIGCSE Bulletin,
34(3):60–64, 2002.

[11] Jeffrey L. Popyack, Bruce Char, Nira Herrmann, Paul Zoski,
Christopher D. Cera, and Robert N. Lass. Pen-Based
Electronic Grading of Online Student Submissions. In
Syllabus fall2002, Technology for Higher Education Conf.,
November 2002.

[12] L. Prechelt, G. Malpohl, and M. Philippsen. JPlag: Finding
Plagiarisms Among a Set of Programs.Technical Report
2000-1, Fakultat fur Informatik, Universitat Karlsruhe,
Germany, March 2000.

[13] Kenneth A. Reek. The TRY System -or- How to Avoid
Testing Student Programs. InProceedings of the Twentieth
SIGCSE Technical Symposium on Computer Science
Education, pages 112–116. ACM Press, 1989.

[14] Michael Richichi. ATTIC: A Case Study of
Directory-enabled Course Management. InProceedings of
the 29th annual ACM SIGUCCS conference on User
services, pages 258–261. ACM Press, 2001.

[15] WebCT.http://www.webct.com .
[16] Michael J. Wise. Yap3: Improved detection of similarities in

computer program and other texts. InProceedings of the
Twenty-Seventh SIGCSE Technical Symposium on Computer
Science Education, pages 130–134. ACM Press, 1996.

