
Paper presented at WebCT 2002 – 4th Annual User Conference, Boston, MA
Page 1 of 11

Labrador: A Tool for Automated Grading Support
in Multi-section Courses

Christopher D. Cera1, Robert N. Lass, Bruce Char, Jeffrey L.
Popyack, Nira Herrmann, and Paul Zoski

Drexel University Programming Learning Experience
(DUPLEX)

Department of Mathematics and Computer Science
Drexel University,

3141 Chestnut Street
Philadelphia, PA 19104

http://duplex.mcs.drexel.edu

1. Introduction
Web-based Course Management Software (CMS) provides a single portal for students and
teaching staff to collaborate in an elaborate interactive environment. This portal provides tools
for online submissions, examinations, student performance monitoring, discussion threads, real-
time chat, and electronic mail. In higher education, these facilities are becoming more common
for delivering a cost-effective and cooperative learning environment.

We provide introductory computer programming courses to Computer Science, Computer
Engineering, Information Systems, and Digital Media majors. Our teaching staff consists of
tenure-track and auxiliary faculty working with graduate teaching assistants and undergraduate
lab assistants and graders. For large classes of about 250-300 students, we typically employ 2-3
professors, and 10-12 teaching assistants.

Our first two introductory programming courses consist of a weekly, one-hour lecture given by
faculty and a two-hour lab section where students take an online quiz and complete group
exercises under the supervision of graduate and undergraduate assistants. Course management is
handled through WebCT, which also serves as a repository of course materials, student
submitted work, and grades. This repository is ideal for gathering statistical artifacts useful for
future administrative evaluations over several iterations of the same course. However, the
software does require an initial time investment to learn. As well, the time required to perform
routine repetitive tasks such as grading student assignments can be very high. Discussions with
other instructional users [2], indicates a similar experience.

WebCT’s strength as a repository for sharing information in a controlled fashion generally
offsets the extra effort students and instructors must exert to learn how to use it. But, we have
also found some aspects of its user interface to be somewhat time consuming to operate. We are
confident that these issues will be resolved in the future. However, our immediate operational
needs for large classes motivated us to create software tools to facilitate bulk downloading
coupled with post-processing of student submitted work, which we report on here. We believe

1 This work supported in part by Drexel University, the National Science Foundation’s Division of Undergraduate
Education through grant DUE-#0089009 and the Pew Learning and Technology Program at the Center for
Academic Transformation as part of the Pew Grant Program in Course Redesign. Email contact:
cera@mcs.drexel.edu, Website: http://duplex.mcs.drexel.edu

Paper presented at WebCT 2002 – 4th Annual User Conference, Boston, MA
Page 2 of 11

that our experience with user-developed, customized add-ons to CMSs illuminates an area that
will be of growing interest and importance.

The rest of this paper is organized as follows: Section 2 outlines the general problem and our
goals in building software to solve it. Section 3 introduces our cross-platform software solution
to the problems. We further elaborate on its use in a practical course environment and the details
of its implementation. Section 4 discusses our results, presents our conclusions, and outlines our
goals for future research.

2. The Problems and Solution Goals
We began using WebCT Campus Edition 3.5 in September 2000. Multiple clicks and some
typing were required to download each student’s program files onto a grader’s local file system.
It was difficult to distribute or collect student work by lab section while still providing students a
common site to pick up and submit material. Once downloaded, additional commands were
needed to uncompress files that were deposited by students in various
archiving/compression/encoding formats (e.g. .gz, .uue, .zip). Care had to be taken to ensure that
all files were downloaded, and that the resulting file had a directory structure that made it easy to
find a particular student’s files

Our goal was to be able to quickly and easily download only the assignments needed by a
specific grader (e.g., just students in one particular section) and have them organized into a
systematic format suitable for grading or interfacing with another program for further processing
(e.g., the JPlag [3] plagiarism detection system). We addressed this problem by creating a
software tool we call Labrador. This tool has also proved extensible and suitable for other uses,
such as generating PDF versions of written work and source files that can be graded
electronically with digital pen-based markup.

WebCT administrator- level access is typically restricted to a few people because of the need to
protect the security and integrity of the WebCT database. Instructional staff members are given
more limited ability (Designer or TA access) to change or extract information from the database:
in order for staff members to download individual student assignments, they must click on each
student’s username individually, then on each file the student uploaded. Beginning with WebCT
version 3.7, users may download all files for a particular student’s assignment by using the zip
feature. However, the user still must click a checkbox to download each student’s submission.
Figure 1 depicts the user interface for browsing assignments.The quiz interface is similar in that
each student must be individually selected and viewed. This interface was designed so then
interactive viewing and grading could take place. To eliminate the breadth of server requests,
some teaching assistants at Drexel prefer to use Labrador to download quiz content, and mark
grades in a spreadsheet program (ie. Microsoft Excel) for batch upload.

To ameliorate the workload issues, and simplify the handling of section data, we decided to
create a software tool, Labrador, which could interact with WebCT and provide the following
features:

1. Quick download of assignments and quizzes with minimal clicking.

2. Ability to pick up work by lab sections.

Paper presented at WebCT 2002 – 4th Annual User Conference, Boston, MA
Page 3 of 11

3. Organization of downloaded files into coherent directory structures.

4. Extensible bulk post-processing of files: file transformation, submission of class files to
spelling, style, and plagiarism checkers, etc.

5. Ability to deposit submissions on a remote computer.

3. Labrador
Labrador is an online course management supplement developed for use with WebCT that
enables users to easily interact with the student files in a single section even when a common
class site is used. It is an extensible and modular interface between WebCT and other systems.
Written in Perl, it runs on all of today’s popular operating systems.

Labrador operates within the limitations of the designer and TA access privileges. Thus, no
special privileges are needed to operate the tool.

3.1 Perl
Perl is an interpreted language with powerful facilities for manipulating textual data that allows
rapid development of complex programs [4]. Perl is already used within WebCT to conduct
backend operations, including database interactions. Since our task consists of parsing WWW
documents retrieved from a WebCT system, Perl was a natural choice. Furthermore, by taking
advantage of the huge number of Perl modules in circulation on the Internet, we did not have to
spend a lot of time "reinventing the wheel".

Perl has been ported to almost every platform including Windows, Macintosh, and Unix
operating systems. Labrador has been designed to take advantage of its cross-platform
capabilities.

3.2 User Interface
We provide a variety of methods for interfacing with Labrador to satisfy the varying preferences
of different users. Currently, there are three different methods with a fourth under design:

1. Command-line. This method involves typing all of the information needed to retrieve the
proper files from WebCT at the command-line prompt, using various options.

2. Interactive. If the needed information is not supplied at the command-line, Labrador will
prompt the user for it. This method is often used by Windows users: Double-clicking on
the Labrador icon is equivalent to running the program with no command-line options and
results in a series of prompts.

3. Configuration File. A user can include a configuration file which defines several
variables that would normally be expected at the command-line. This file can be generated
any time the program is run, and then serves as the default for future uses of the program
unless over-ridden with a command-line option.

4. GUI. The authors are currently planning to build a Graphical User Interface using Java
Swing, which should also work on all popular platforms.

An example download, using the command-line and interactive interfaces, is shown in Figures 2
and 3, respectively. Below we discuss the components of Labrador in detail. The components
are decoupled such that they can be invoked independently, or in sequence.

Paper presented at WebCT 2002 – 4th Annual User Conference, Boston, MA
Page 4 of 11

3.3 Bulk Downloading of Assignments and Quizzes
The underlying technology behind this component is essentially a Web-crawler. It simulates the
Web browsing that a staff member would normally undertake to download only the submissions
for students of interest. In Section 2 we discussed some inefficiencies with the normal
downloading process and the labor it involves. By automating the series of clicks required for
the standard downloading process, we can considerably diminish the time and effort to complete
the task. Another advantage of using Labrador for this process is that the user does not have to
interact with a Web browser, and downloads can be done remotely. The bulk downloading
process for assignments has been addressed in WebCT version 3.7, but this functionality is still
needed for quizzes.

This is the only component of Labrador that interacts directly with the WebCT system. It
downloads student-submitted files to a directory on the Labrador user’s computer. All other
components of Labrador use the downloaded files in this directory.

In order to download assignments in bulk from WebCT, the user must first provide access
authorization to Labrador. Depending on the chosen interface method discussed in Section 3.2,
the user must provide a username, password, course number, and the name or identification
number of the assignment or quiz to be downloaded. The user may optionally provide a list of
desired students, and Labrador will selectively download only the submissions of those students.
This list can be easily saved and re-used for future submission retrievals.

3.4 Post-Processing Student Data
After a file is downloaded it may undergo some filtering to facilitate subsequent steps of the
grading process.

3.4.1 Decompression and Archive Extraction
Labrador can optionally decode, de-archive, and decompress work, which was encoded by either
the student or WebCT. Other systems, such as source code plagiarism detection systems, will
expect documents to be in text form. The original files may be in a combination of formats (for
example, both gzipped and tarred), and Labrador will properly decipher them. Thus, subsequent
components of Labrador do not have to perform this filtering.

Some of the types of files and formats submitted by students include:

1. tar format, used to archive directories of files into a single file.

2. gz format, used to compress files sent over networks, to reduce the bandwidth.

3. zip format, the most widely used archive and compression format.

4. uue format, a more arcane format used to transfer binary data between systems that do
not support receipt of binary data.

3.4.2 Section Sorting
The first prototypes of Labrador simply downloaded all student submissions for a particular
assignment or quiz. This wasted server bandwidth as each TA downloaded unnecessary
assignments. Now Labrador will sort assignments and quizzes by creating a directory for each

Paper presented at WebCT 2002 – 4th Annual User Conference, Boston, MA
Page 5 of 11

section with subdirectories for each student in their respective section. A depiction of the results
is shown in Figure 4.

Since WebCT does not provide an easy process for representing sections, Labrador needs the
user to supply this information. This can be done in one of two ways:

1. Creating a “Section” column in the grade database on WebCT and populating that
column with each students’ section.

2. Supplying a comma-separated (.csv) file, containing “username, section” pairs, as input
to Labrador.

At many colleges and universities, it is possible to automatically generate these files for large
courses using the central student information system and exporting to Microsoft Excel, which
can in turn be used to generate the .csv file.

3.4.3 Portable Document Format (PDF) files for Electronic Pen-based Markup
The most recent component added to Labrador is the ability to transform source code from
submitted student assignments into Adobe’s Portable Document Format (PDF) files. An
advantage of PDF files is that they can be viewed with free software available on almost every
platform.

Using Adobe Distiller software, PDF documents can have sections of text highlighted,
underlined, and further annotated before being returned to students. Pen tablets, such as the
Wacom Graphire or the Sony Vaio Slimtop Pen Tablet PCV-LX920, provide an intuitive
interface for such marking of PDF documents. This feedback method has the closest resemblance
to the handwritten markings of traditional pen and paper grading while keeping the advantages of
being represented digitally.

3.5 Interfacing with Heterogeneous Systems
There is a need for systems such as WebCT to interoperate with other heterogeneous systems.
Every system has at least one format or protocol it accepts as input. Unfortunately, these formats
are usually different and often incompatible with one another. In this section we explain how
Labrador is used to interface with two separate systems.

Plagiarism is a common problem in large classes. To address this, there are several free and
commercially available programs and services which perform batch similarity measures on a
collection of documents [1,3,5]. In our domain, all submitted assignments are computer
programs so we require a somewhat specialized system.

Labrador can quickly download and package all student work in a hierarchical structure on the
user’s local file system. This structure can then be integrated with a plagiarism detection system
for either computer programs or written assignments. These systems report overall similarity
metrics based on a single document or a collection of documents. Interfaces providing document
by document comparisons are also available to aid in the discovery of plagiarism.

It would be desirable to have WebCT provide a way of easily retrieving data (in the form of
previously completed assignments) from earlier offerings of the same course in the event that a
particular assignment were reused. This would eliminate the long-term plagiarism problem for
frequently offered courses.

Paper presented at WebCT 2002 – 4th Annual User Conference, Boston, MA
Page 6 of 11

Moss. We have made extensive use of the Moss program to detect plagiarism in C++
programming assignments. Moss handles several programming languages, including C, C++,
Java, ML, Lisp, Scheme, Pascal, and Ada. The diversity of language support can be utilized in a
variety of programming courses.

Output from Moss provides a list of HTML links to flagged regions of suspect documents as well
as a measure of percent similarity. A screenshot of the browsable Web interface from Moss,
with corresponding similarity values, is given in Figure 5. Moss also has a “common code”
feature that allows the user to specify code that should be removed from the similarity detection.
This is useful, for example, when the instructor provides computer code for students to use as
part of their solution to an assignment; thus, all students would be expected to have this code in
common and it should be eliminated when checking for plagiarism.

Jplag. JPlag is another plagiarism detection system that has recently come to our attention. In
experimental runs, it has been more effective in detecting plagiarism in computer programs. The
programming languages supported by this system include C, C++, Scheme, and Java. It
computes a similarity value among two documents, or groups of documents if applicable. A
screenshot of JPlag’s Web interface, depicting similarity measures, is shown in Figure 6.

This program has an added advantage that it works on written English text, so it can detect
plagiarism within the internal and external documentation that accompanies student programs.
This system can also be easily utilized in liberal arts courses to detect plagiarism in written
documents, reports, etc. Labrador quickly and easily provides the middle-ware interface
between WebCT and JPlag.

4. Discussion
We have found significant advantages to maintaining a WebCT-based course implementation.
Prominent among them are less time spent with HTML layout for course websites, a technology
learning curve amortized over many courses instead of just one, and fewer student papers
misplaced. Early adopters, however, will continue to wish for additional functionality for their
domain to achieve significant time savings or facilitate additional pedagogical goals. More
significantly, we see it inevitable that certain courses or disciplines will desire additional
operations or post-processing that would be unsuitable to offer to users who would find such
functionality confusing or irrelevant to their disciplines.

We have focused on particular tools that could be feasibly developed over a modest period of
time and that brought substantial value to our teaching staff. The goal of our software solution is
to make staff more productive by allowing them to spend their time grading and interacting
directly with students instead of operating user interfaces. In addition, since Labrador removed a
major source of irritation from graders when using WebCT, they were more open to cons idering
its benefits and making use of its strengths in course management.

We are continuing to develop software tools to facilitate course management with WebCT,
interact with other software systems, and provide an easier interface for our students and faculty.

Paper presented at WebCT 2002 – 4th Annual User Conference, Boston, MA
Page 7 of 11

5. Acknowledgments
We wish to acknowledge the assistance of Mr. John Morris, Dr. Janice M. Biros, and their
colleagues in the Office of Information Resource and Technology at Drexel University for their
help and support with WebCT.

Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science Foundation, the
Center for Academic Transformation, or the other supporting organizations.

References
[1] Alex Aiken. Moss: A system for detecting software plagiarism (unpublished),

http://www.cs.berkeley.edu/~aiken/moss.html.

[2] Jeffrey L Popyack, Bruce Char, Paul Zoski, Nira Herrmann, and Christopher D. Cera.
Managing course management systems. In Proceedings of the thirty-third SIGCSE technical
symposium on Computer Science Education, Birds-of-a-Feather Sessions, page 423, 2002.

[3] L. Prechelt, G. Malpohl, and M. Philippsen. Jplag: Finding plagiarisms among a set of
programs. Technical Report 2000-1, Fakultat fur Informatik, Universitat Karlsruhe,
Germany, March 2000.

[4] Larry Wall, Tom Chrisiansen, Jon Orwant. Programming with Perl. O’Reilly &
Associates, 3rd edition, 2000.

[5] Michael J. Wise. Yap3: Improved detection of similarities in computer program and other
texts. In Proceedings of the twenty-seventh SIGCSE technical symposium on Computer
Science Education, pages 130–134. ACM Press, 1996.

Paper presented at WebCT 2002 – 4th Annual User Conference, Boston, MA
Page 8 of 11

Figure 1: A screenshot of WebCT’s assignment browser

$ perl labrador.perl -u rnl22 -c CS172BB -b 19283 -a -e -p -w -f list.txt
This program is in C++ mode.

checking -->student1<--
 has submitted -->Assignment 4.zip<--
checking -->student2<--
checking -->student3<--
 has submitted -->writtenproblems.doc<--
 has submitted -->LargeInt.cpp<--
 has submitted -->LargeInt.h<--
 has submitted -->mainprog.cpp<--
 has submitted -->test.cpp<--
 has submitted -->External_documentation.doc<--
checking -->student4<--

Figure 2: A screenshot of the Labrador command-line interface

Paper presented at WebCT 2002 – 4th Annual User Conference, Boston, MA
Page 9 of 11

$ perl labrador.perl
This program is in C++ mode.
The configuration file was not found. Would you like to create one now?
(y/n) y
Your WebCT username: rnl22
WebCT name of the course (e.g.: CS172BB): CS172BB
File of list of usernames: list.txt
Would you like verbose printing (y/n)? y

----------Config File Written----------

Would you like to get (q)uizzes or (a)ssignments?a
Would you like post processing (y/n)?y
Would you like to generate source code PDFs (y/n)?y
Password:
[1] Asst. 6
[2] Asst. 1
[3] Asst. 2
[4] Asst. 3
[5] Asst. 4
[6] Asst. 5

--> 5

...

checking -->student1<--
 has submitted -->Assignment 4.zip<--
checking -->student2<--
checking -->student3<--
 has submitted -->writtenproblems.doc<--
 has submitted -->LargeInt.cpp<--
 has submitted -->LargeInt.h<--
 has submitted -->mainprog.cpp<--
 has submitted -->test.cpp<--
 has submitted -->External_documentation.doc<--
checking -->student4<--

Figure 3: A screenshot of Labrador prompting the user for information

Paper presented at WebCT 2002 – 4th Annual User Conference, Boston, MA
Page 10 of 11

Figure 4: A screenshot of a grader’s file system after sorting by sections

Figure 5: Moss’ similarity browser

Paper presented at WebCT 2002 – 4th Annual User Conference, Boston, MA
Page 11 of 11

Figure 6: JPlag’s similarity browser

